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In the period 1991–2015, algorithmic advances in Mixed Integer Opti-
mization (MIO) coupled with hardware improvements have resulted in an
astonishing 450 billion factor speedup in solving MIO problems. We present
a MIO approach for solving the classical best subset selection problem of
choosing k out of p features in linear regression given n observations. We
develop a discrete extension of modern first-order continuous optimization
methods to find high quality feasible solutions that we use as warm starts to a
MIO solver that finds provably optimal solutions. The resulting algorithm (a)
provides a solution with a guarantee on its suboptimality even if we terminate
the algorithm early, (b) can accommodate side constraints on the coefficients
of the linear regression and (c) extends to finding best subset solutions for the
least absolute deviation loss function. Using a wide variety of synthetic and
real datasets, we demonstrate that our approach solves problems with n in
the 1000s and p in the 100s in minutes to provable optimality, and finds near
optimal solutions for n in the 100s and p in the 1000s in minutes. We also
establish via numerical experiments that the MIO approach performs better
than Lasso and other popularly used sparse learning procedures, in terms of
achieving sparse solutions with good predictive power.

1. Introduction. We consider the linear regression model with response vec-
tor yn×1, model matrix X = [x1, . . . ,xp] ∈ R

n×p , regression coefficients β ∈ R
p×1

and errors ε ∈ R
n×1: y = Xβ + ε. We will assume that the columns of X have

been standardized to have zero means and unit �2-norm. In many important clas-
sical and modern statistical applications, it is desirable to obtain a parsimonious
fit to the data by finding the best k-feature fit to the response y. Especially in the
high-dimensional regime with p � n, in order to conduct statistically meaningful
inference, it is desirable to assume that the true regression coefficient β is sparse.
Quite naturally, the last few decades have seen a flurry of activity in estimating
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sparse linear models with good explanatory power. Central to this statistical task
lies the best subset problem [Miller (2002)] with subset size k, which is given by
the following optimization problem:

min
β

1

2
‖y − Xβ‖2

2 subject to ‖β‖0 ≤ k,(1.1)

where the �0 (pseudo)norm of a vector β counts the number of nonzeros in β
and is given by ‖β‖0 = ∑p

i=1 1(βi �= 0), where 1(·) denotes the indicator func-
tion. The cardinality constraint makes problem (1.1) NP-hard [Natarajan (1995)].
Indeed, state-of-the-art algorithms to solve problem (1.1), as implemented in popu-
lar statistical packages, like leaps in R, do not scale to problem sizes larger than
p = 30. Due to this reason, it is not surprising that the best subset problem has
been widely dismissed as being intractable by the greater statistical community.

In this paper, we address problem (1.1) using modern optimization methods,
specifically mixed integer optimization (MIO) and a discrete extension of first-
order continuous optimization methods. Using a wide variety of synthetic and real
datasets, we demonstrate that our approach solves problems with n in the 1000s
and p in the 100s in minutes to provable optimality, and finds near optimal solu-
tions for n in the 100s and p in the 1000s in minutes. To the best of our knowledge,
this is the first time that MIO has been demonstrated to be a tractable solution
method for problem (1.1). We note that we use the term tractability not to mean
the usual polynomial solvability for problems, but rather the ability to solve prob-
lems of realistic size with associated certificates of optimality, in times that are
appropriate for the applications we consider.

Brief context and background. As there is a vast literature on the best sub-
set problem, we present a brief and selective overview of related approaches. To
overcome the computational difficulties of the best subset problem, computation-
ally friendlier convex optimization based methods like Lasso [Chen, Donoho and
Saunders (1998), Tibshirani (1996)] have been proposed as a surrogate for prob-
lem (1.1). For the linear regression problem, the Lagrangian form of Lasso solves

min
β

1

2
‖y − Xβ‖2

2 + λ‖β‖1,(1.2)

where the �1 penalty on β , that is, ‖β‖1 = ∑
i |βi | shrinks the coefficients toward

zero and produces a sparse solution by setting many coefficients to be exactly zero.
There has been a substantial amount of impressive work on Lasso [Bickel, Ri-
tov and Tsybakov (2009), Candès and Plan (2009), Donoho (2006), Efron et al.
(2004), Greenshtein and Ritov (2004), Knight and Fu (2000), Meinshausen and
Bühlmann (2006), Wainwright (2009), Zhang and Huang (2008), Zhao and Yu
(2006)] in terms of algorithms and understanding of its theoretical properties; see
also the excellent books or surveys [Bühlmann and van de Geer (2011), Hastie,
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Tibshirani and Friedman (2009), Tibshirani (2011)]. Indeed, Lasso enjoys sev-
eral attractive statistical properties. Under various conditions on the model matrix
X and n,p,β , it can be shown that Lasso delivers a sparse model with good
predictive performance [Bühlmann and van de Geer (2011), Hastie, Tibshirani and
Friedman (2009)]. In order to perform exact variable selection, much stronger as-
sumptions are required [Bühlmann and van de Geer (2011)]. Sufficient conditions
under which Lasso gives a sparse model with good predictive performance are
the restricted eigenvalue conditions and compatibility conditions [Bühlmann and
van de Geer (2011)]. These involve statements about the spectrum of submatrices
of X and are difficult to verify [Bandeira et al. (2013)] for a given data-matrix X.
An important reason behind the popularity of Lasso is perhaps its computational
efficiency and scalability to practical sized problems. Problem (1.2) is a convex
quadratic optimization problem and there are several efficient solvers for it; see,
for example, Efron et al. (2004), Friedman et al. (2007), Nesterov (2013).

In spite of its favorable statistical properties, Lasso has several shortcomings.
In the presence of noise and correlated variables, in order to deliver a model with
good predictive accuracy, Lasso brings in a large number of nonzero coefficients
(all of which are shrunk toward zero) including noise variables. Lasso leads to
biased regression coefficient estimates, since the �1-norm penalizes the large coef-
ficients more severely than the smaller coefficients. In contrast, if the best subset
selection procedure decides to include a variable in the model, it brings it in with-
out any shrinkage thereby draining the effect of its correlated surrogates. Upon
increasing the degree of regularization, Lasso sets more coefficients to zero, but
in the process ends up leaving out true predictors from the active set. Thus, as
soon as certain sufficient regularity conditions on the data are violated, Lasso
becomes suboptimal as (a) a variable selector and (b) in terms of delivering a
model with good predictive performance. The shortcomings of Lasso are also
known in the statistics literature. In fact, there is a significant gap between what
can be achieved via best subset selection and Lasso: this is supported by em-
pirical (for small problem sizes, i.e., p ≤ 30) and theoretical evidence; see, for
example, Greenshtein (2006), Mazumder, Friedman and Hastie (2011), Raskutti,
Wainwright and Yu (2011), Shen et al. (2013), Zhang, Wainwright and Jordan
(2014), Zhang and Zhang (2012) and the references therein. Some discussion is
also presented in Section 4.

To address the shortcomings, nonconvex penalized regression is often used to
“bridge” the gap between the convex �1 penalty and the combinatorial �0 penalty
[Candès, Wakin and Boyd (2008), Fan and Li (2001), Frank and Friedman (1993),
Friedman (2008), Mazumder, Friedman and Hastie (2011), Zhang (2010a, 2010b),
Zhang and Huang (2008), Zou (2006), Zou and Li (2008)]. Written in Lagrangian
form, this gives rise to continuous nonconvex optimization problems of the form

1

2
‖y − Xβ‖2

2 + ∑
i

p
(|βi |;γ ;λ)

,(1.3)
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where p(|β|;γ ;λ) is a nonconvex function in β with λ and γ denoting the degree
of regularization and nonconvexity, respectively. Typical examples of nonconvex
penalties include the minimax concave penalty (MCP), the smoothly clipped ab-
solute deviation (SCAD) and �γ penalties [see, e.g., Fan and Li (2001), Frank and
Friedman (1993), Mazumder, Friedman and Hastie (2011), Zou and Li (2008)].
There is strong statistical evidence indicating the usefulness of estimators obtained
as minimizers of nonconvex penalized problems (1.3) over Lasso; see, for ex-
ample, Fan and Lv (2011, 2013), Loh and Wainwright (2013), Lv and Fan (2009),
van de Geer, Bühlmann and Zhou (2011), Zhang (2010a), Zhang and Zhang
(2012), Zheng, Fan and Lv (2014). In a recent paper, Zheng, Fan and Lv (2014) dis-
cuss the usefulness of nonconvex penalties over convex penalties (like Lasso) in
identifying important covariates, leading to efficient estimation strategies in high
dimensions. They describe interesting connections between �0 regularized least
squares and least squares with the hard thresholding penalty; and in the process
develop comprehensive global properties of hard thresholding regularization in
terms of various metrics. Fan and Lv (2013) establish asymptotic equivalence of a
wide class of regularization methods in high dimensions with comprehensive sam-
pling properties on both global and computable solutions. Problem (1.3) mainly
leads to a family of continuous and nonconvex optimization problems. Various ef-
fective nonlinear optimization based methods [see, e.g., Candès, Wakin and Boyd
(2008), Fan and Li (2001), Loh and Wainwright (2013), Mazumder, Friedman and
Hastie (2011), Zhang (2010a), Zou and Li (2008) and the references therein] have
been proposed in the literature to obtain good local minimizers to problem (1.3).
In particular, Mazumder, Friedman and Hastie (2011) propose Sparsenet, a
coordinate-descent procedure to trace out a surface of local minimizers for prob-
lem (1.3) for the MCP penalty using effective warm start procedures.

The Lagrangian version of (1.1) given by

1

2
‖y − Xβ‖2

2 + λ

p∑
i=1

1(βi �= 0),(1.4)

may be seen as a special case of (1.3). Note that, due to nonconvexity, prob-
lems (1.4) and (1.1) are not equivalent. Problem (1.1) allows one to control the
exact level of sparsity via the choice of k, unlike (1.4) where there is no clear cor-
respondence between λ and k. Problem (1.4) is a discrete optimization problem
unlike continuous optimization problems (1.3) arising from continuous nonconvex
penalties. Insightful statistical properties of problem (1.4) have been explored from
a theoretical viewpoint in Greenshtein (2006), Greenshtein and Ritov (2004), Shen
et al. (2013), Zhang and Zhang (2012), for example. Shen et al. (2013) points out
that (1.1) is preferable over (1.4) in terms of superior statistical properties of the
resulting estimator. The aforementioned papers, however, do not discuss methods
to obtain provably optimal solutions to problems (1.4) or (1.1), and to the best of
our knowledge, computing optimal solutions to problems (1.4) and (1.1) is deemed
as intractable.
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Our approach. In this paper, we propose a novel framework via which the
best subset selection problem can be solved to optimality or near optimality in
problems of practical interest within a reasonable time frame. At the core of our
proposal is a computationally tractable framework that brings to bear the power of
modern discrete optimization methods: discrete first-order methods motivated by
first-order methods in convex optimization [Nesterov (2004)] and mixed integer
optimization (MIO); see Bertsimas and Weismantel (2005). We do not guarantee
polynomial time solution times as these do not exist for the best subset problem
unless P = NP. Rather, our view of computational tractability is the ability of a
method to solve problems of practical interest in times that are appropriate for the
application addressed. An advantage of our approach is that it adapts to variants of
the best subset regression problem of the form

min
β

1

2
‖y − Xβ‖q

q s.t. ‖β‖0 ≤ k,Aβ ≤ b,

where Aβ ≤ b represents polyhedral constraints and q ∈ {1,2} refers to a least
absolute deviation or the least squares loss function on the residuals r := y − Xβ .

Approaches in the mathematical optimization literature. In a seminal pa-
per Furnival and Wilson (1974), the authors describe a leaps and bounds proce-
dure for computing global solutions to problem (1.1) (for the classical n > p case)
which can be achieved with computational effort significantly less than complete
enumeration. leaps, a state-of-the-art R package uses this principle to perform
best subset selection for problems with n > p and p ≤ 30. Bertsimas and Shioda
(2009) proposed a tailored branch-and-bound scheme that can be applied to prob-
lem (1.1) using ideas from Furnival and Wilson (1974) and techniques in quadratic
optimization, extending and enhancing the proposal of Bienstock (1996). The pro-
posal of Bertsimas and Shioda (2009) concentrates on obtaining high quality upper
bounds for problem (1.1) and is less scalable than the methods presented in this
paper.

Contributions. We summarize our contributions in this paper below:

1. We use MIO to find a provably optimal solution for the best subset problem.
Our approach has the appealing characteristic that if we terminate the algorithm
early, we obtain a solution with a guarantee on its suboptimality. Furthermore, our
framework can accommodate side constraints on β and also extends to finding best
subset solutions for the least absolute deviation loss function.

2. We introduce a general algorithmic framework based on a discrete extension
of modern first-order continuous optimization methods that provide near-optimal
solutions for the best subset problem. The MIO algorithm significantly benefits
from solutions obtained by the first-order methods and problem specific informa-
tion that can be computed in a data-driven fashion.
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3. We report computational results with both synthetic and real-world datasets
that show that our proposed framework can deliver provably optimal solutions for
problems of size n in the 1000s and p in the 100s in minutes. For high-dimensional
problems with n ∈ {50,100} and p ∈ {1000,2000}, with the aid of warm starts and
further problem-specific information, our approach finds nearly optimal solutions
in minutes but takes hours to provide certificates on the quality of the solution.

4. We investigate the statistical properties of best subset selection procedures
for practical problem sizes, which to the best of our knowledge, have remained
largely unexplored to date. We demonstrate the favorable predictive performance
and sparsity-inducing properties of the best subset selection procedure over its
competitors in a wide variety of real and synthetic examples for the least squares
and absolute deviation loss functions.

The structure of the paper is as follows. In Section 2, we present a brief overview
of MIO, including a summary of the computational advances it has enjoyed in the
last twenty-five years. We present the proposed MIO formulations for the best sub-
set problem as well as some connections with the compressed sensing literature
for estimating parameters and providing lower bounds for the MIO formulations
that improve their computational performance. In Section 3, we develop a discrete
extension of first-order methods in convex optimization to obtain near optimal so-
lutions for the best subset problem and establish its convergence properties—the
proposed algorithm and its properties may be of independent interest. Section 4
briefly reviews some of the statistical properties of the best-subset solution, high-
lighting the performance gaps in prediction error, over regular Lasso-type esti-
mators. In Section 5, we perform a variety of computational tests on synthetic and
real datasets to assess the algorithmic and statistical performances of our approach
for the least squares loss function for both the classical overdetermined case n > p,
and the high-dimensional case p � n. In Section 6, we report computational re-
sults for the least absolute deviation loss function. In Section 7, we include our
concluding remarks. Due to space limitations, some of the material has been rele-
gated to the supplemental article [Bertsimas, King and Mazumder (2015)].

2. Mixed integer optimization formulations. We present a brief overview
of MIO, including the simply astonishing advances it has enjoyed in the last
twenty-five years. We then present the proposed MIO formulations for the best
subset problem as well as some connections with the compressed sensing litera-
ture for estimating parameters. We also present completely data driven methods
to estimate parameters in the MIO formulations that improve their computational
performance.

2.1. Brief background on MIO. The general form of a Mixed Integer Quadra-
tic Optimization (MIO) problem is as follows:

min αT Qα + αT a

s.t. Aα ≤ b,
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αi ∈ {0,1}, i ∈ I,

αj ≥ 0, j /∈ I,

where a ∈ R
m,A ∈ R

k×m,b ∈ R
k and Q ∈ R

m×m (positive semidefinite) are the
given parameters of the problem; the symbol “≤” denotes element-wise inequal-
ities and we optimize over α ∈ R

m containing both discrete (αi, i ∈ I) and con-
tinuous (αi, i /∈ I) variables, with I ⊂ {1, . . . ,m}. For background on MIO, see
Bertsimas and Weismantel (2005). Subclasses of MIO problems include convex
quadratic optimization problems (I = ∅), mixed integer (Q = 0m×m) and linear
optimization problems (I = ∅,Q = 0m×m). Some examples of modern integer
optimization solvers include CPLEX, GLPK, MOSEK and GUROBI.

In the period 1991–2015, the computational power of MIO solvers has increased
at an astonishing rate. In Bixby (2012), to measure the speedup of MIO solvers, the
same set of MIO problems were tested on the same computers using twelve con-
secutive versions of CPLEX and version-on-version speedups were reported. The
versions tested ranged from CPLEX 1.2, released in 1991 to CPLEX 11, released in
2007. Each version released in these years produced a speed improvement on the
previous version, leading to a total speedup factor of more than 29,000 between
the first and last version tested [see Bixby (2012), Nemhauser (2013) for details].
GUROBI 1.0, an MIO solver which was first released in 2009, was measured to
have similar performance to CPLEX 11. Version-on-version speed comparisons
of successive GUROBI releases have shown a speedup factor of nearly 27 between
GUROBI 6.0, released in 2015, and GUROBI 1.0 [Bixby (2012), Nemhauser (2013),
Optimization Inc. (2015)]. The combined machine-independent speedup factor in
MIO solvers between 1991 and 2015 is 780,000. This impressive speedup factor is
due to incorporating both theoretical and practical advances into MIO solvers. Cut-
ting plane theory, disjunctive programming for branching rules, improved heuristic
methods, techniques for preprocessing MIOs, using linear optimization as a black
box to be called by MIO solvers, and improved linear optimization methods have
all contributed greatly to the speed improvements in MIO solvers [Bixby (2012)].
In addition, the past twenty years have also brought dramatic improvements in
hardware. Figure 1 shows the exponentially increasing speed of supercomputers
over the past twenty years, measured in billion floating point operations per second
[Top500 Supercomputer Sites (2015)]. The hardware speedup from 1994 to 2015
is approximately 105.75 ∼ 570,000. When both hardware and software improve-
ments are considered, the overall speedup is approximately 450 billion. Note that
the speedup factors cited here refer to mixed integer linear optimization problems.
The speedup factors for mixed integer quadratic problems are similar. MIO solvers
provide both feasible solutions as well as lower bounds to the optimal value. As the
MIO solver progresses toward the optimal solution, the lower bounds improve and
provide an increasingly better guarantee of suboptimality, which is especially use-
ful if the MIO solver is stopped before reaching the global optimum. In contrast,
heuristic methods do not provide such a certificate of suboptimality.
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FIG. 1. Peak supercomputer speed in GFlop/s (log scale) from 1994–2015.

The belief that MIO approaches to problems in statistics are not practically rel-
evant was formed in the 1970s and 1980s and it was at the time justified. Given the
astonishing speedup of MIO solvers and computer hardware in the last twenty-five
years, the mindset of MIO as theoretically elegant but practically irrelevant per-
haps needs to be revisited. In this paper, we provide empirical evidence of this fact
in the context of the best subset selection problem.

2.2. MIO formulations for the best subset selection problem. We first present a
simple reformulation to problem (1.1) as a MIO (in fact, a mixed integer quadratic
optimization) problem:

Z1 = min
β,z

1

2
‖y − Xβ‖2

2

s.t. −MUzi ≤ βi ≤ MUzi, i = 1, . . . , p,
(2.1)

zi ∈ {0,1}, i = 1, . . . , p,

p∑
i=1

zi ≤ k,

where z ∈ {0,1}p is a binary variable and MU is a constant such that if β̂ is a
minimizer of problem (2.1), then MU ≥ ‖β̂‖∞. If zi = 1, then |βi | ≤ MU and if
zi = 0, then βi = 0. Thus,

∑p
i=1 zi is an indicator of the number of nonzeros in β .

Provided that MU is chosen to be sufficiently large with MU ≥ ‖β̂‖∞, a so-
lution to problem (2.1) will be a solution to problem (1.1). Of course, MU is
not known a priori, and a small value of MU may lead to a solution different
from (1.1). The choice of MU affects the strength of the formulation and is criti-
cal for obtaining good lower bounds in practice. In Section 2.3, we describe how to
find appropriate values for MU . Note that there are other MIO formulations, pre-
sented herein [see problem (2.4)] that do not rely on a-priori specifications of MU .
However, we will stick to formulation (2.1) for the time being, since it provides
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some interesting connections to the Lasso. Formulation (2.1) leads to interesting
insights, especially via the structure of the convex hull of its constraints:

Conv

({
β : |βi | ≤MUzi, zi ∈ {0,1}, i = 1, . . . , p,

p∑
i=1

zi ≤ k

})
= {

β : ‖β‖∞ ≤ MU,‖β‖1 ≤ MUk
} ⊆{

β : ‖β‖1 ≤ MUk
}
.

Thus, the minimum of problem (2.1) is lower-bounded by the optimum objective
value of both the following convex optimization problems:

Z2 := min
β

1

2
‖y − Xβ‖2

2 subject to ‖β‖∞ ≤ MU,‖β‖1 ≤ MUk,(2.2)

Z3 := min
β

1

2
‖y − Xβ‖2

2 subject to ‖β‖1 ≤ MUk,(2.3)

where (2.3) is the familiar Lasso in constrained form. This is a weaker relax-
ation than formulation (2.2), which in addition to the �1 constraint on β , has box-
constraints controlling the values of the βi ’s. It is easy to see that the following
ordering exists: Z3 ≤ Z2 ≤ Z1, with the inequalities being strict in most instances.
In terms of approximating the optimal solution to problem (2.1), the MIO solver
begins by first solving a continuous relaxation of problem (2.1). The Lasso for-
mulation (2.3) is weaker than this root node relaxation. Additionally, MIO is typi-
cally able to significantly improve the quality of the root node solution as the MIO
solver progresses toward the optimal solution. To motivate the reader, we provide
an example of the evolution (see Figure 2) of the MIO formulation (2.4) for the
Diabetes dataset [Efron et al. (2004)], with n = 350,p = 64 (for further details on
the dataset see Section 5).

Since formulation (2.1) is sensitive to the choice of MU , we consider an alterna-
tive MIO formulation based on Specially Ordered Sets [Bertsimas and Weismantel
(2005)] as described next.

Formulations via specially ordered sets. Any feasible solution to formula-
tion (2.1) will have (1 − zi)βi = 0 for every i ∈ {1, . . . , p}. This constraint can
be modeled via integer optimization using Specially Ordered Sets of Type 1
[Bertsimas and Weismantel (2005)] (SOS-1), as follows:

(1 − zi)βi = 0 ⇐⇒ (βi,1 − zi) : SOS-1,

for every i = 1, . . . , p. This leads to the following formulation of (1.1):

min
β,z

1

2
‖y − Xβ‖2

2

s.t. (βi,1 − zi) : SOS-1, i = 1, . . . , p,
(2.4)

zi ∈ {0,1}, i = 1, . . . , p,
p∑

i=1

zi ≤ k.
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FIG. 2. The typical evolution of the MIO formulation (2.4) for the diabetes dataset with
n = 350,p = 64 with k = 6 (left panel) and k = 7 (right panel). The top panel shows the evolu-
tion of upper and lower bounds with time. The lower panel shows the evolution of the corresponding
MIO gap with time. Optimal solutions for both the problems are found in a few seconds in both ex-
amples, but it takes 10–20 minutes to certify optimality via the lower bounds. Note that the time taken
for the MIO to certify convergence to the global optimum increases with increasing k.

Problem (2.4) can also be used obtain global solutions to problem (1.1)—
problem (2.4) unlike problem (2.1) does not require any specification of the pa-
rameter MU .

We now present a more structured representation of problem (2.4):

min
β,z

1

2
βT (

XT X
)
β − 〈

X′y,β
〉 + 1

2
‖y‖2

2

s.t. (βi,1 − zi) : SOS-1, i = 1, . . . , p,

zi ∈ {0,1}, i = 1, . . . , p,
(2.5)

p∑
i=1

zi ≤ k,

−MU ≤ βi ≤MU, i = 1, . . . , p,

‖β‖1 ≤ M�.

We also provide problem-dependent constants MU and M� ∈ [0,∞]. MU pro-
vides an upper bound on the absolute value of the regression coefficients and M�

provides an upper bound on the �1-norm of β . Adding these bounds typically leads
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to improved performance of the MIO, especially in delivering lower bound certifi-
cates. In Section 2.3, we describe several approaches to compute these parameters
from the data.

We also consider another formulation for (2.5):

min
β,z,ζ

1

2
ζ T ζ − 〈

X′y,β
〉 + 1

2
‖y‖2

2

s.t. ζ = Xβ,

(βi,1 − zi) : SOS-1, i = 1, . . . , p,

zi ∈ {0,1}, i = 1, . . . , p,

p∑
i=1

zi ≤ k,(2.6)

−MU ≤ βi ≤ MU, i = 1, . . . , p,

‖β‖1 ≤ M�,

−Mζ
U ≤ ζi ≤ Mζ

U , i = 1, . . . , n,

‖ζ‖1 ≤ Mζ
� ,

where the optimization variables are β ∈ R
p, ζ ∈ R

n, z ∈ {0,1}p and MU,M�,

Mζ
U ,Mζ

� ∈ [0,∞] are problem specific parameters. Problem (2.6) is equivalent
to the following variant of the best subset problem:

min
β

1

2
‖y − Xβ‖2

2

s.t. ‖β‖0 ≤ k,
(2.7)

‖β‖∞ ≤ MU, ‖β‖1 ≤ M�,

‖Xβ‖∞ ≤ Mζ
U , ‖Xβ‖1 ≤ Mζ

� .

Formulations (2.5) and (2.6) differ in the size of the quadratic forms that are in-
volved. The current state-of-the-art MIO solvers are better equipped to handle
mixed integer linear over quadratic optimization problems. Formulation (2.5) has
fewer variables but has a quadratic form in p variables—we find this formulation
more useful in the n > p regime, with p in the 100s. Formulation (2.6) on the other
hand, has more variables, but involves a quadratic form in n variables—making it
more useful for high-dimensional problems p � n, with n in the 100s and p in the
1000s.

As we said earlier, the bounds on β and ζ are not required, but if these con-
straints are provided, they improve the strength of the MIO formulation. In other
words, formulations with tightly specified bounds provide better lower bounds to
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the global optimization problem in a specified amount of time, when compared
to a MIO formulation with loose bound specifications. We next show how these
bounds can be computed from given data.

2.3. Specification of parameters. We present herein methods to estimate the
quantities MU,M�,Mζ

U ,Mζ
� such that an optimal solution to problem (2.7) is

also an optimal solution to problem (1.1).

2.3.1. Specification of parameters via coherence and restricted eigenvalues.
Herein, we describe methods relating the parameters to the notions of coherence
and restricted strong convexity [Candes and Tao (2006), Donoho and Huo (2001)].

Coherence and restricted eigenvalues of a model matrix. Given a model ma-
trix X, Tropp (2006) introduced the cumulative coherence function

μ[k] := max|I |=k
max
j /∈I

∑
i∈I

∣∣〈Xj ,Xi〉
∣∣,

where, Xj , j = 1, . . . , p represent the columns of X, that is, features. For k = 1,
we obtain the notion of coherence introduced in Donoho and Elad (2003), Donoho
and Huo (2001) as a measure of the maximal pairwise correlation in absolute value
of the columns of X: μ := μ[1] = maxi �=j |〈Xi ,Xj 〉|. Candès (2008), Candes and
Tao (2006) [see also Bühlmann and van de Geer (2011) and references therein]
introduced the notion that a matrix X satisfies a restricted eigenvalue condition if

λmin
(
X′

I XI

) ≥ γk for every I ⊂ {1, . . . , p} such that |I | ≤ k,(2.8)

where λmin(X′
I XI ) denotes the smallest eigenvalue of the matrix X′

I XI . An in-
equality linking μ[k] and γk is as follows.

PROPOSITION 1. The following bounds hold:

(a) [Tropp (2006)]: μ[k] ≤ μ · k.
(b) [Donoho and Elad (2003)]: γk ≥ 1 − μ[k − 1] ≥ 1 − μ · (k − 1).

The computations of μ[k] and γk for general k are difficult, while μ is sim-
ple to compute. Proposition 1 provides bounds for μ[k] and γk in terms of the
coherence μ.

Operator norms of submatrices. The (p, q) operator norm of matrix A is given
by ‖A‖p,q := max‖u‖q=1 ‖Au‖p . We will use extensively here the (1,1) operator
norm. We assume that each column vector of X has unit �2-norm. The results
derived in the next proposition (for a proof see Section 8.3 in the supplementary
material [Bertsimas, King and Mazumder (2015)]) borrow and enhance techniques
developed by Tropp (2006) in the context of analyzing the �1-�0 equivalence in
compressed sensing.
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PROPOSITION 2. For any I ⊂ {1, . . . , p} with |I | = k, we have:

(a) ‖X′
I XI − I‖1,1 ≤ μ[k − 1].

(b) If X′
I XI is invertible and ‖X′

I XI − I‖1,1 < 1, then ‖(X′
I XI )

−1‖1,1 ≤
1

1−μ[k−1] .

We note that part (b) also appears in Tropp (2006) for the operator norm
‖(X′

I XI )
−1‖∞,∞.

Given a set I ⊂ {1, . . . , p} with |I | = k, we let β̂I denote the least squares re-
gression coefficients obtained by regressing y on XI , that is, β̂I = (X′

I XI )
−1X′

I y.
If we append β̂I with zeros in the remaining coordinates we obtain β̂ , where, we
suppress the dependence on I for notational convenience.

Recall that Xj , j = 1, . . . , p represent the columns of X; and we will use xi , i =
1, . . . , n to denote the rows of X. As discussed above ‖Xj‖ = 1. We order the
correlations |〈Xj ,y〉|:∣∣〈X(1),y〉∣∣ ≥ ∣∣〈X(2),y〉∣∣ ≥ · · · ≥ ∣∣〈X(p),y〉∣∣.(2.9)

We finally denote by ‖xi‖1:k the sum of the top k absolute values of the en-
tries of xij , j ∈ {1,2, . . . , p}. The following theorem (for a proof, see Section 8.4
[Bertsimas, King and Mazumder (2015)]).

THEOREM 2.1. For any k ≥ 1 such that μ[k − 1] < 1 any optimal solution β̂
to (1.1) satisfies:

(a) ‖β̂‖1 ≤ 1

1 − μ[k − 1]
k∑

j=1

∣∣〈X(j),y〉∣∣,(2.10)

(b) ‖β̂‖∞ ≤ min

{
1

γk

√√√√√ k∑
j=1

∣∣〈X(j),y〉∣∣2, 1√
γk

‖y‖2

}
,(2.11)

(c) ‖Xβ̂‖1 ≤ min

{
n∑

i=1

‖xi‖∞‖β̂‖1,
√

k‖y‖2

}
,(2.12)

(d) ‖Xβ̂‖∞ ≤
(

max
i=1,...,n

‖xi‖1:k
)
‖β̂‖∞.(2.13)

Note that, above, the upper bound in part (a) becomes infinite as soon as μ[k −
1] ≥ 1. In such a case, we can obtain bounds by using techniques described in
Section 2.3.2. The interesting message conveyed by Theorem 2.1 is that the upper
bounds on ‖β̂‖1, ‖β̂‖∞, ‖Xβ̂‖1 and ‖Xβ̂‖∞, corresponding to the problem (2.7)
can all be obtained in terms of γk and μ[k − 1], quantities of fundamental inter-
est appearing in the analysis of �1 regularization methods and understanding how
close they are to �0 solutions [Candès (2008), Candes and Tao (2006), Donoho
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and Elad (2003), Donoho and Huo (2001), Tropp (2006)]. On a different note,
Theorem 2.1 arises from a purely computational motivation and quite curiously, in-
volves the same quantities: cumulative coherence and restricted eigenvalues. While
quantities μ[k − 1], γk are difficult to compute exactly, they can be approximated
by Proposition 1 which provides bounds commonly used in the compressed sens-
ing literature.

2.3.2. Specification of parameters via convex quadratic optimization. We
present alternative purely data-driven way to compute the upper bounds to the
parameters by solving several simple convex quadratic optimization problems.

Bounds on β̂i ’s. For the case n > p, upper and lower bounds on β̂i can be
obtained by solving the following pair of convex optimization problems:

u+
i := max

β
βi u−

i := min
β

βi

(2.14)

s.t.
1

2
‖y − Xβ‖2

2 ≤ UB, s.t.
1

2
‖y − Xβ‖2

2 ≤ UB,

for i = 1, . . . , p. Above, UB is an upper bound to the minimum of problem (1.1).
u+

i is an upper bound to β̂i , since the cardinality constraint ‖β‖0 ≤ k does not
appear in the optimization problem. Similarly, u−

i is a lower bound to β̂i . The
quantity Mi

U = max{|u+
i |, |u−

i |} serves as an upper bound to |β̂i |. A reasonable
choice for UB is obtained by using the discrete first-order methods (as described
in Section 3) in combination with the MIO formulation (2.4) (for a predefined
amount of time). Having obtained Mi

U as described above, we can obtain an upper

bound to ‖β̂‖∞ and ‖β̂‖1 as follows: MU = maxi Mi
U and ‖β̂‖1 ≤ ∑k

i=1 M
(i)
U

where, M(1)
U ≥ M(2)

U ≥ · · · ≥ M(p)
U . Similarly, bounds corresponding to parts (c)

and (d) in Theorem 2.1 can be obtained by using the upper bounds on ‖β̂‖∞,‖β̂‖1
as described above.

Note that the quantities u+
i and u−

i are finite when the level sets of the least
squares loss function are bounded—the bounds are loose when p > n. In the
following, we describe methods to obtain nontrivial bounds on 〈xi ,β〉, for i =
1, . . . , n that apply for arbitrary n,p.

Bounds on 〈xi , β̂〉’s. Consider the following convex quadratic optimization
problems:

v+
i := max

β
〈xi ,β〉 v−

i := min
β

〈xi ,β〉
(2.15)

s.t.
1

2
‖y − Xβ‖2

2 ≤ UB, s.t.
1

2
‖y − Xβ‖2

2 ≤ UB,

for i = 1, . . . , n. Note that the bounds obtained from (2.15) are nontrivial for
both the under-determined and overdetermined cases. These bounds are upper
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and lower bounds since we drop the cardinality constraint on β . The quantity
vi = max{|v+

i |, |v−
i |} serves as an upper bound to |〈xi ,β〉|. In particular, this leads

to simple upper bounds on ‖Xβ̂‖∞ ≤ maxi vi and ‖Xβ̂‖1 ≤ ∑
i vi and can be

thought of completely data-driven methods to estimate bounds appearing in (2.12)
and (2.13). Problems (2.14) and (2.15) can be computed efficiently, as we dis-
cuss in Section 8.1 in the supplementary material [Bertsimas, King and Mazumder
(2015)].

2.3.3. Parameter specifications from advanced warm-starts. The methods in
Sections 2.3.1 and 2.3.2 lead to provable bounds on the parameters: with these
bounds problem (2.7) provides an optimal solution to problem (1.1). We now de-
scribe some alternatives that lead to excellent parameter specifications in practice.

The discrete first-order methods described in Section 3 provide good upper
bounds to problem (1.1). These solutions when supplied as a warm-start to the
MIO formulation (2.4) are often improved by MIO, thereby leading to high qual-
ity solutions to problem (1.1) within several minutes. If β̂hyb denotes an estimate
obtained from this hybrid approach, then MU := τ‖β̂hyb‖∞ with τ a multiplier
greater than one (e.g., τ ∈ {1.5,2,5}) provides a good estimate for the parameter
MU . A reasonable upper bound to ‖β̂‖1 is kMU . Bounds on the other quantities:
‖Xβ̂‖1,‖Xβ̂‖∞ can be derived by using expressions appearing in Theorem 2.1,
with aforementioned bounds on ‖β̂‖1 and ‖β̂‖∞.

2.3.4. Some generalizations and variants. Some variations and improvements
of the procedures described above are presented in Section 8.2 in the supplemen-
tary material [Bertsimas, King and Mazumder (2015)].

Recommendations. We summarize our observations about the parameter
choices based on some numerical experiments. For n > p examples, when X is
full rank, methods in Sections 2.3.1, 2.3.2 are often quite similar—we thus rec-
ommend computing bounds via both these methods and taking the tighter of the
two. For n < p examples, when k is small, Section 2.3.1 provides useful bounds
on β , which are not available via Section 2.3.2. We recommend computing the
implied bounds on all parameters appearing in parts (a)–(b) (Theorem 2.1) and
taking the tightest bound. Bounds obtained via Section 2.3.3 are generally always
tighter (provided τ is small) and are readily available as a by-product of our al-
gorithmic framework—we recommend these bounds in practice, unless provably
optimal bounds are of the essence. We remind the reader that these bounds are
particularly useful while proving optimality of the solutions obtained via MIO.
They are not as critical in obtaining good upper bounds to problem (1.1).

3. Discrete first-order algorithms. We develop a discrete extension of first-
order methods in convex optimization [Nesterov (2004, 2013)] to obtain near opti-
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mal solutions for problem (1.1) and the least absolute deviation (LAD) loss func-
tion. Our approach applies to the problem of minimizing any smooth convex func-
tion subject to cardinality constraints. In Section 5, we demonstrate how these
methods enhance the performance of MIO.

Our framework borrows ideas from projected gradient descent methods in first-
order convex optimization problems [Nesterov (2004)] and generalizes them to
the discrete optimization problem (3.1). We also derive new global convergence
results for our proposed algorithms as presented in Theorem 3.1. In the signal
processing literature [Blumensath and Davies (2008, 2009)] proposed iterative
hard-thresholding algorithms for problem (1.4). The authors establish convergence
properties of the algorithm when X satisfies a coherence [Blumensath and Davies
(2008)] or Restricted Isometry Property [Blumensath and Davies (2009)]. In the
context of problem (1.1), our algorithm and its convergence analysis do not require
any such condition on X. Our framework, with some novel modifications also ap-
plies to the nonsmooth least absolute deviation loss with cardinality constraints as
discussed in Section 3.2.

Consider the following optimization problem:

min
β

g(β) subject to ‖β‖0 ≤ k,(3.1)

where, g(β) ≥ 0 is2 convex and has Lipschitz continuous gradient:∥∥∇g(β) − ∇g(β̃)
∥∥ ≤ �‖β − β̃‖.(3.2)

The first ingredient of our approach is the observation that when g(β) = ‖β − c‖2
2

for a given c, problem (3.1) admits a closed form solution (for completeness we
present a proof in Section 9.2 of the supplementary material [Bertsimas, King and
Mazumder (2015)]).

PROPOSITION 3. If β̂ is an optimal solution to the following problem:

β̂ ∈ arg min
‖β‖0≤k

‖β − c‖2
2,(3.3)

then it can be computed as follows: β̂ retains the k largest (in absolute value)
elements of c ∈ R

p and sets the rest to zero, i.e., if |c(1)| ≥ |c(2)| ≥ · · · ≥ |c(p)|,
denote the ordered values of the absolute values of the vector c, then

β̂i =
{

ci, if i ∈ {
(1), . . . , (k)

}
,

0, otherwise,
(3.4)

where, β̂i is the ith coordinate of β̂ . We will denote the set of solutions to prob-
lem (3.3) by the notation Hk(c).

2The lower bound of zero in g(β) ≥ 0, can be relaxed to be any finite number.
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The notation “argmin” [appearing in problem (3.3) and other places that fol-
low] denotes the set of minimizers. Operator (3.4) is also known as the hard-
thresholding operator [Donoho and Johnstone (1994)]—a notion that arises in the
context of the following related optimization problem:

β̂ ∈ arg min
β

‖β − c‖2
2 + λ‖β‖0,(3.5)

where, β̂ admits a simple closed form expression given by β̂i = ci if |ci | >
√

λ

and β̂i = 0 otherwise, for i = 1, . . . , p.

REMARK 1. There is a subtle difference between the minimizers of prob-
lems (3.3) and (3.5). For problem (3.5), the smallest (in absolute value) nonzero
element in β̂ is greater than

√
λ in absolute value. On the other hand, in prob-

lem (3.3) there is no lower bound to the minimum (in absolute value) nonzero
element of a minimizer. This issue arises while analyzing the convergence proper-
ties of Algorithm 1 (see Section 3.1).

Given a current solution β , the second ingredient of our approach is to up-
per bound the function g(η) around g(β). To do so, we use ideas from projected
gradient descent methods in first-order convex optimization problems [Nesterov
(2004, 2013)].

PROPOSITION 4 [Nesterov (2013, 2004)]. For a convex function g(β) satisfy-
ing condition (3.2) and for any L ≥ �, we have

g(η) ≤ QL(η,β) := g(β) + L

2
‖η − β‖2

2 + 〈∇g(β),η − β
〉

(3.6)

for all β,η with equality holding at β = η.

Applying Proposition 3 to the upper bound QL(η,β) in Proposition 4, we obtain

arg min
‖η‖0≤k

QL(η,β)

= arg min
‖η‖0≤k

(
L

2

∥∥∥∥η −
(
β − 1

L
∇g(β)

)∥∥∥∥2

2
− 1

2L

∥∥∇g(β)
∥∥2

2 + g(β)

)
(3.7)

= arg min
‖η‖0≤k

∥∥∥∥η −
(
β − 1

L
∇g(β)

)∥∥∥∥2

2

= Hk

(
β − 1

L
∇g(β)

)
,

where Hk(·) is defined in (3.4). In light of (3.7), we are now ready to present
Algorithm 1 to find a stationary point (see Definition 1) of problem (3.1).
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ALGORITHM 1. Input: g(β), parameter: L and convergence tolerance: ε.
Output: A first-order stationary solution β∗.

1. Initialize with β1 ∈ R
p such that ‖β1‖0 ≤ k.

2. For m ≥ 1, apply (3.7) with β = βm to obtain βm+1 as:

βm+1 ∈ Hk

(
βm − 1

L
∇g(βm)

)
.(3.8)

3. Repeat step 2, until g(βm) − g(βm+1) ≤ ε.

3.1. Convergence analysis of Algorithm 1. We first define the notion of first-
order optimality for problem (3.1).

DEFINITION 1. Given an L ≥ �, the vector η ∈ R
p is said to be a first-order

stationary point of problem (3.1) if ‖η‖0 ≤ k and it satisfies the following fixed-
point equation:

η ∈ Hk

(
η − 1

L
∇g(η)

)
.(3.9)

We provide some intuition associated with the above definition. Consider η as
in Definition 1. Since ‖η‖0 ≤ k, there is a set I ⊂ {1, . . . , p} such that ηi = 0, i ∈ I

and the size of I c (complement of I ) is k. Since η ∈ Hk(η − 1
L
∇g(η)), for i /∈ I

we have: ηi = ηi − 1
L
∇ig(η), where, ∇ig(η) is the ith coordinate of ∇g(η). It thus

follows: ∇ig(η) = 0, i /∈ I . Since g(η) is convex in η, this means that η solves the
following convex optimization problem:

min
η

g(η) s.t. ηi = 0, i ∈ I.(3.10)

Note, however, that the converse of the above statement is not true. That is, if Ĩ ⊂
{1, . . . , p} is an arbitrary subset with |Ĩ c| = k then a solution η̂

Ĩ
to the restricted

convex problem (3.10) with I = Ĩ need not correspond to a first-order stationary
point. Any global minimizer to problem (3.1) is also a first-order stationary point
(see Proposition 7). The following proposition (for its proof see Section 9.3 in the
supplementary material [Bertsimas, King and Mazumder (2015)]) sheds light on a
first-order stationary point η for which ‖η‖0 < k (i.e., the inequality is strict).

PROPOSITION 5. If η satisfies the first-order stationary condition (3.9) and
‖η‖0 < k, then η ∈ arg minβ g(β).

We define the notion of an ε-approximate first-order stationary point of prob-
lem (3.1).
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DEFINITION 2. Given an ε > 0 and L ≥ � we say that η satisfies an ε-
approximate first-order optimality condition of problem (3.1) if ‖η‖0 ≤ k and for
some η̂ ∈ Hk(η − 1

L
∇g(η)), we have ‖η − η̂‖2 ≤ ε.

We now introduce some notation. Let βm = (βm1, . . . , βmp) and 1m = (e1, . . . ,

ep) with ej = 1, if βmj �= 0, and ej = 0, if βmj = 0, j = 1, . . . , p, that is, 1m repre-
sents the sparsity pattern of the support of βm. Suppose, we order the coordinates
of βm by their absolute values: |β(1),m| ≥ |β(2),m| ≥ · · · ≥ |β(p),m|. Note that by
definition (3.8), β(i),m = 0 for all i > k and m ≥ 2. We denote αk,m = |β(k),m| to
be the kth largest (in absolute value) entry in βm for all m ≥ 2. Clearly, if αk,m > 0
then ‖βm‖0 = k and if αk,m = 0 then ‖βm‖0 < k. Let αk := lim supm→∞ αk,m and
αk := lim infm→∞ αk,m.

The following proposition, the proof of which can be found in Section 9.1
[Bertsimas, King and Mazumder (2015)], describes the asymptotic convergence
properties of Algorithm 1.

PROPOSITION 6. Consider g(β) and � as defined in (3.2). Let βm,m ≥ 1 be
the sequence generated by Algorithm 1. Then we have:

(a) For any L ≥ �, the sequence g(βm) is decreasing, converges and satisfies

g(βm) − g(βm+1) ≥ L − �

2
‖βm+1 − βm‖2

2.(3.11)

(b) If L > �, then βm+1 − βm → 0 as m → ∞.
(c) If L > � and αk > 0, then the sequence 1m converges after finitely many

iterations, that is, there exists an iteration index M∗ such that 1m = 1m+1 for all
m ≥ M∗. Furthermore, the sequence βm is bounded and converges to a first-order
stationary point.

(d) If L > � and αk = 0 then lim infm→∞ ‖∇g(βm)‖∞ = 0.
(e) Let L > �, αk = 0 and suppose that the sequence βm has a limit point. Then

g(βm) → minβ g(β).

REMARK 2. Note that the existence of a limit point in Proposition 6, part (e)
is guaranteed under fairly weak conditions. One such condition is that sup{β :
‖β‖0 ≤ k, f (β) ≤ f0} < ∞, for any finite value f0. In words, this means that the
k-sparse level sets of the function g(β) is bounded. In the special case where g(β)

is the least squares loss function, the above condition is equivalent to every k-
submatrix (XJ ) of X comprising of k columns being full rank. In particular, this
holds with probability one when the entries of X are drawn from a continuous
distribution and k < n.

REMARK 3. Parts (d) and (e) of Proposition 6 correspond to unregularized
solutions of the problem ming(β). The conditions assumed in part (c) imply that
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the support of βm stabilizes and Algorithm 1 behaves like vanilla gradient descent
thereafter. The support of βm need not stabilize for parts (d), (e) and thus Algo-
rithm 1 may not behave like vanilla gradient descent after finitely many iterations.
However, the objective values (under minor regularity assumptions) converge to
ming(β).

The following proposition, the proof of which can be found in Section 9.4,
establishes some additional properties of the fixed-point equation (3.9).

PROPOSITION 7. Suppose L > �. We have the following:

(a) If η satisfies a first-order stationary point as in Definition 1, then the set
Hk(η − 1

L
∇g(η)) has exactly one element: η.

(b) If β̂ is a global minimizer of problem (3.1), then it is a first-order stationary
point.

While Proposition 6 establishes the asymptotic convergence properties of Al-
gorithm 1, the following theorem, the proof of which can be found in Section 9.5
[Bertsimas, King and Mazumder (2015)], characterizes the rate of convergence of
the algorithm to a first-order stationary point.

THEOREM 3.1. Let L > � and β∗ denote a first-order stationary point of Al-
gorithm 1. After M iterations, Algorithm 1 satisfies

min
m=1,...,M

‖βm+1 − βm‖2
2 ≤ 2(g(β1) − g(β∗))

M(L − �)
,(3.12)

where g(βm) ↓ g(β∗) as m → ∞.

Theorem 3.1 implies that for any ε > 0 there exists M = O(1
ε
) such that for

some 1 ≤ m∗ ≤ M , we have ‖βm∗+1 − βm∗‖2
2 ≤ ε. Note that the convergence

rates derived above apply for a large class of problems (3.1), where, the function
g(β) ≥ 0 is convex with Lipschitz continuous gradient (3.2). Tighter rates may be
obtained under additional structural assumptions on g(·). For example, the adap-
tation of Algorithm 1 for problem (1.4) was analyzed in Blumensath and Davies
(2008, 2009) with X satisfying coherence [Blumensath and Davies (2008)] or Re-
stricted Isometry Property (RIP) [Blumensath and Davies (2009)]. In these cases,
the algorithm can be shown to have a linear convergence rate [Blumensath and
Davies (2008, 2009)], where the rate depends upon the RIP constants.

Note that by Proposition 6 the support of βm stabilizes after finitely many it-
erations, after which Algorithm 1 behaves like gradient descent on the stabilized
support. If g(β) restricted to this support is strongly convex, then Algorithm 1
will enjoy a linear rate of convergence [Nesterov (2004)], as soon as the support
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stabilizes. This behavior is adaptive, that is, Algorithm 1 does not need to be mod-
ified after the support stabilizes. We next describe practical schemes via which
first-order stationary points of Algorithm 1 can be obtained by solving a low di-
mensional convex optimization problem, as soon as the support stabilizes. In our
experiments, this algorithm (with multiple starting points) took at most 1–2 min-
utes for p = 2000 and a few seconds for smaller values of p.

Polishing coefficients on the active set. Algorithm 1 detects the active set after
a few iterations. Once the active set stabilizes, the algorithm may take a number of
iterations to estimate the values of the regression coefficients on the active set to a
high accuracy level. In this context, we found the following simple method to be
quite useful. When the algorithm has converged to a tolerance of ε (≈ 10−4), we
fix the current active set, I , and solve a lower-dimensional convex optimization
problem (3.10) with I = Ic—for the least squares and least absolute deviation
problems, this can be solved very efficiently.

We observed in our experiments that Algorithm 2, a minor variant of Algo-
rithm 1 had better empirical performance. Algorithm 2 modifies step 2 of Algo-
rithm 1 by using a simple line search, as described below:

ALGORITHM 2. Replace step 2 in Algorithm 1 by:

2. βm+1 = λmηm + (1 −λm)βm,where, ηm ∈ Hk(βm − 1
L
∇g(βm)), with λm ∈

arg minλ g(ληm + (1 − λ)βm).

ηm produced by Algorithm 2 is k-sparse and the updates satisfy: g(βm+1) ≤
g(ηm). Algorithm 2 may be perceived as one that restarts Algorithm 1 with multi-
ple starting points: βm. We observed empirically that λm ≈ 0 after a few iterations
in which case, ηm,βm+1 have the same support, and thus Algorithm 2 behaves
like Algorithm 1. For Algorithm 2, we use the following convergence criterion:
we exit if |g(ηm+1) − g(ηm)| ≤ ε or run the algorithm for a maximum of N itera-
tions and exit with ηm∗ , where, m∗ ∈ arg min1≤m≤N g(ηm). Algorithm 1 is then run
with the resultant estimate—this usually takes at most a few additional iterations
to converge.3

3.2. Application to least squares subset selection. For problem (1.1), we have
g(β) = 1

2‖y − Xβ‖2
2, ∇g(β) = −X′(y − Xβ) and � = λmax(X′X)—and the frame-

work described above, applies readily. The polishing of coefficients in the active
set can be performed via a least squares problem on y,XJ , where J denotes the
support of the k-sparse regression coefficient.

3We note that this step is hardly necessary in practice, but might be used to ensure a convergent
algorithm.
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3.3. Application to least absolute deviation subset selection. We consider the
LAD problem with support constraints in β:

min
β

g1(β) := ‖y − Xβ‖1 s.t. ‖β‖0 ≤ k.(3.13)

Since g1(β) is nonsmooth, our framework does not apply directly. We smooth
the non-differentiable g1(β) so that we can apply Algorithms 1 and 2. Observ-
ing that g1(β) = sup‖w‖∞≤1〈y − Xβ,w〉 we make use of the smoothing tech-
nique of Nesterov (2005) to obtain g1(β; τ) = sup‖w‖∞≤1(〈y − Xβ,w〉− τ

2‖w‖2
2).

g1(β; τ) is a smooth approximation of g1(β), with � = λmax(X′X)/τ and our al-
gorithmic framework applies.

In order to obtain a good approximation to problem (3.13), we found the fol-
lowing strategy to be useful in practice:

1. Fix τ > 0, initialize with β0 ∈ R
p and repeat the following steps 2–3 till

convergence:
2. Apply Algorithm 1 (or Algorithm 2) to the smooth function g1(β; τ). Let β∗

τ

be the limiting solution.
3. Decrease τ ← τγ for some predefined constant γ = 0.8 (say), and go back

to step 1 with β0 = β∗
τ . Exit if τ < TOL, for some predefined tolerance.

4. A brief tour of statistical properties of problem (1.1). For the sake of
completeness, we briefly review some statistical properties of problem (1.1) and
contrast it with Lasso based solutions. Suppose, data is generated via a linear

model: y = Xβ0 +ε, with εi
i.i.d.∼ N(0, σ 2) and let β̂ be a solution to (1.1). In terms

of the expected (worst case) predictive risk, it is well known [Bunea, Tsybakov
and Wegkamp (2007), Raskutti, Wainwright and Yu (2011), Zhang, Wainwright
and Jordan (2014)] that the following upper bound holds:

max
β0:‖β0‖0≤k

1

n
E

(∥∥Xβ0 − Xβ̂
∥∥2

2

)
� σ 2 k log(p)

n
,(4.1)

where, “�” stands for “≤” up to universal constants. A natural question is: how
do the bounds for Lasso-based solutions compare with (4.1)? Following Zhang,
Wainwright and Jordan (2014), we define, for any subset S ∈ {1,2, . . . , p}, with
size |S| = k; C(S) := {β : ∑

j /∈S |βj | ≤ 3
∑

j∈S |βj |}. X is said to satisfy a re-

stricted eigenvalue type condition with parameter γ (X) if it satisfies:4 1
n
‖Xβ‖2

2 ≥
γ (X)‖β‖2

2 for β ∈ ⋃
S C(S). Suppose β̂�1

solves (1.2) with λ = 4nσ

√
logp

n
and let

β̂TL denote its thresholded version, which retains the top k entries of β̂�1
in abso-

lute value and sets the remaining to zero. Zhang, Wainwright and Jordan (2014)

4Note that γ (X) ≤ 1 and γ (X) is related to the so called compatibility condition [Bühlmann and
van de Geer (2011)].
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show that under such restricted eigenvalue type conditions the following holds:

σ 2

γ (Xbad)2

k1−δ log(p)

n
� max

β0:‖β0‖0≤k

1

n
E

(∥∥Xβ0 − Xβ̂TL
∥∥2

2

)
(4.2)

� σ 2

γ (X)2

k log(p)

n
.

In particular, the lower bounds apply to bad design matrices Xbad for some ar-
bitrarily small scalar δ > 0. In light of (4.1) and (4.2), there is a significant gap
between the predictive performances of subset selection procedures and Lasso
based k-sparse solutions.5 If γ (X) is small (occurring, e.g., if the pairwise corre-
lations between the features is quite high) this gap can be quite large.

Zhang and Zhang (2012) study statistical properties of solutions to prob-
lem (1.4). Raskutti, Wainwright and Yu (2011), Zhang and Zhang (2012) study
estimation errors in regression coefficients, under additional minor assumptions
on X. Shen et al. (2013), Zhang and Zhang (2012) provide interesting theoreti-
cal analysis of the variable selection properties of (1.1) and (1.4), demonstrating
their superior variable selection properties over Lasso based methods. In passing,
we remark that Zhang and Zhang (2012) develop statistical properties of inexact
solutions to problem (1.4). This may serve as theoretical support for near global
solutions to problem (1.1), where the certificates of suboptimality are delivered by
our MIO framework in terms of global lower bounds.

5. Computational experiments for subset selection with least squares loss.
We present a variety of computational experiments to assess the algorithmic and
statistical performances of our approach. We consider both the classical overdeter-
mined case with n > p (Section 5.2) and the high-dimensional p � n case (Sec-
tion 5.3) for the least squares loss function with support constraints.

5.1. Description of experimental data. We perform a series of experiments on
both synthetic and real data.

Synthetic datasets. We consider a collection of problems where xi ∼ N(0,),

i = 1, . . . , n are independent realizations from a p-dimensional multivariate nor-
mal distribution with mean zero and covariance matrix  := (σij ). The columns
of the X matrix were subsequently standardized to have unit �2 norm. For a fixed

X, we generated y = Xβ0 + ε, with εi
i.i.d.∼ N(0, σ 2). We denote the number of

nonzeros in β0 by k0. We define the Signal-to-Noise Ratio (SNR) of the problem

as: SNR = var(x′β0)

σ 2 . We consider the following examples.

5In fact Zhang, Wainwright and Jordan (2014) establish a result stronger than (4.2), where β̂TL
can be replaced by a k-sparse estimate delivered by a polynomial time method.
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EXAMPLE 1. We took σij = ρ|i−j | for i, j ∈ {1, . . . , p}× {1, . . . , p}. We con-
sider different values of k0 ∈ {5,10} and β0

i = 1 for k0 equispaced values; rounding
the indices to the nearest large integer value of i ∈ {1,2, . . . , p} when required.

EXAMPLE 2. We took � = Ip×p , k0 = 5 and β0 = (1′
5×1,0′

p−5×1)
′ ∈ R

p .

EXAMPLE 3. We took � = Ip×p , k0 = 10 and β0
i = 1

2 + (10 − 1
2) (i−1)

k0
, i =

1, . . . ,10 and β0
i = 0,∀i > 10—i.e., a vector with ten nonzero entries, with the

nonzero values being equally spaced in the interval [1
2 ,10].

EXAMPLE 4. We took � = Ip×p , k0 = 6 and β0 = (−10,−6,−2,2,6,10,

0p−6), that is, a vector with six nonzero entries, equally spaced in the interval
[−10,10].

Real datasets. We considered the Diabetes dataset [Efron et al. (2004)] with
all the second order interactions included in the model, which resulted in 64 pre-
dictors. We reduced the sample size to n = 350 by taking a random sample and
standardized the response and the columns of the model matrix to have zero means
and unit �2-norm.

In addition to the above, we also considered a real microarray dataset: the
Leukemia data [Dettling (2004)] downloaded from http://stat.ethz.ch/~dettling/
bagboost.html, with n = 72 binary responses and more than 3000 predictors. We
standardized the response and features to have zero means and unit �2-norm.
We reduced the set of features to 1000 by retaining the features maximally cor-
related (in absolute value) to the response. From the resulting matrix X with
n = 72,p = 1000, we generated a semisynthetic dataset with continuous response
as y = Xβ0 + ε, where the first five coefficients of β0 were taken as one and the

rest as zero. The noise was distributed as εi
i.i.d.∼ N(0, σ 2), with σ 2 chosen to get a

SNR = 7.

Computer specifications and software. Computations were carried out in a
linux 64 bit server—Intel(R) Xeon(R) eight-core processor @ 1.80 GHz, 16 GB
of RAM for the overdetermined n > p case. For the p > n examples, all compu-
tations were carried out on Columbia University’s high performance computing
facility, http://hpc.cc.columbia.edu/, on the Yeti cluster computing environment
in a Dell Precision T7600 computer with an Intel Xeon E52687 sixteen-core pro-
cessor @ 3.1 GHz, 128 GB of Ram. The discrete first-order methods were imple-
mented in MATLAB 2012b. We used GUROBI [Gurobi (2013)] version 5.5, for the
MIO solvers.

http://stat.ethz.ch/~dettling/bagboost.html
http://hpc.cc.columbia.edu/
http://stat.ethz.ch/~dettling/bagboost.html
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5.2. The overdetermined regime: n > p. Herein, we study the combined effect
of using the discrete first-order methods with the MIO approach using the Diabetes
dataset and synthetic datasets. Together, these methods show improvements in ob-
taining good upper bounds and in closing the MIO gap to certify global optimality.
Using synthetic datasets where we know the true linear regression model, we per-
form side-by-side comparisons of this method with several other state-of-the-art
algorithms designed to estimate sparse linear models.

5.2.1. Obtaining good upper bounds. We conducted experiments to evaluate
the performance of our methods in terms of obtaining high quality solutions for
problem (1.1). The following three algorithms were considered:

(a) Algorithm 2 with fifty random initializations.6 We took the solution corre-
sponding to the best objective value.

(b) MIO with cold start, that is, formulation (2.4) with a time limit of 500 sec-
onds.

(c) MIO with warm start. This was the MIO formulation (2.4) initialized with
a solution obtained from (a). The combined run was for a total of 500 seconds.

For the MIO formulation (2.4) above, since n > p, we massaged the objective
function into the form (2.5), that is, a quadratic problem in p variables.

To compare the different algorithms in terms of the quality of upper bounds, we
run for every instance all the algorithms and obtain the best solution among them,
say, f∗. If falg denotes the value of the best subset objective function for method
alg ∈ {(a), (b), (c)}, we define the relative accuracy of the solution obtained by
“alg” as

Relative accuracy = (falg − f∗)/f∗.(5.1)

Table 1 shows results for the Diabetes dataset for different values of k. For each
algorithm, we report the time taken by it to reach the best objective value during
the time of 500 seconds. Using the discrete first-order methods in combination
with the MIO algorithm resulted in finding the best possible relative accuracy in a
matter of a few minutes.

5.2.2. Improving MIO performance via warm starts. We performed a series of
experiments on the Diabetes dataset to obtain a globally optimal solution to prob-
lem (1.1) via our approach and to understand the implications of using advanced
warm starts to the MIO formulation in terms of certifying optimality. For each k,
we ran Algorithm 2 with fifty random initializations, which took less than a few

6we took fifty random starting values around 0 of the form min(i − 1,1)ε, i = 1, . . . ,50, where
ε ∼ N(0p×1,4I). We chose Algorithm 2 since it provided better upper bounds than Algorithm 1.
However, if Algorithm 1 is run with many more initializations, the best solution obtained is similar
to Algorithm 2.



838 D. BERTSIMAS, A. KING AND R. MAZUMDER

TABLE 1
Quality of upper bounds for problem (1.1) for the Diabetes dataset, for different values of k. We

observe that MIO equipped with warm starts deliver the best upper bounds in the shortest overall
times. The run time for the MIO with warm start includes the time taken by the discrete

first-order method

Discrete first-order MIO cold start MIO warm start

k Accuracy Time Accuracy Time Accuracy Time

9 0.1306 1 0.0036 500 0 346
20 0.1541 1 0.0042 500 0 77
49 0.1915 1 0.0015 500 0 87
57 0.1933 1 0 500 0 2

seconds to run. We used the best solution as an advanced warm start to the MIO
formulation (2.5). The MIO solver was provided with problem-specific bounds ob-
tained via Section 2.3.3 with τ = 2. For each of these examples, we also ran the
MIO formulation without any such additional problem-specific information, that
is, formulation (2.4)—we refer to this as “Cold Start.” Figure 3 presents a represen-
tative subset of the results. We also experimented (not reported here, for brevity)
with bounds implied by Sections 2.3.1, 2.3.2 and observed that the MIO formula-
tion (2.5) armed with warm-starts and additional bounds closed the optimality gap
faster than their “Cold Start” counterpart.

FIG. 3. The evolution of the MIO optimality gap [in log10(·) scale] for problem (1.1), for the
Diabetes dataset with n = 350,p = 64, for different values of k. Here, “Warm Start” indicates
that the MIO was provided with warm starts and parameter specifications as in Section 2.3; and
“Cold Start” indicates that MIO was not provided with any such problem-specific information. MIO
(“Warm Start”) is found close the optimality gap much faster. In all of these examples, the global
optimum was found within a very small fraction of the total time, but the proof of global optimality
came later.
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5.2.3. Statistical performance. We considered datasets as described in Exam-
ple 1, Section 5.1—we took different values of n,p with n > p, ρ with k0 = 10.

Competing methods and performance measures. For every example, we con-
sidered the following learning procedures for comparison purposes: (a) the MIO7

formulation (2.4) equipped with warm starts from Algorithm 2 (annotated as
“MIO” in the figure), (b) the Lasso, (c) Sparsenet and (d) stepwise regres-
sion (annotated as “Step” in the figure). In addition to the above, we have also
performed comparisons with an unshrunk version of the Lasso, that is, perform-
ing unrestricted least squares on the Lasso support to mitigate the bias imparted
by Lasso shrinkage.

We used R to compute Lasso, Sparsenet and stepwise regression using the
glmnet 1.7.3, Sparsenet and Stats 3.0.2 packages, respectively, which were all
downloaded from CRAN at http://cran.us.r-project.org/.

We note that Sparsenet [Mazumder, Friedman and Hastie (2011)] considers
a penalized likelihood formulation of the form (1.3), where the penalty is given by
the generalized MCP penalty family (indexed by λ,γ ) for a family of values of
γ ≥ 1 and λ ≥ 0. The family of penalties used by Sparsenet is thus given by:

p(t;γ ;λ) = λ(|t |− t2

2λγ
)I(|t | < λγ )+ λ2γ

2 I(|t | ≥ λγ ) for γ,λ described as above.
As γ = ∞ with λ fixed, we get the penalty p(t;γ ;λ) = λ|t |. This family includes
as a special case (γ = 1), the hard thresholding penalty, recommended in Zheng,
Fan and Lv (2014) for its useful statistical properties.

For each procedure, we obtained the “optimal” tuning parameter by selecting
the model that achieved the best predictive performance on a held out validation
set. Once the model β̂ was selected, we obtained the prediction error as

Prediction error = ∥∥Xβ̂ − Xβ0∥∥2
2/

∥∥Xβ0∥∥2
2.(5.2)

Note that, if the (sample) features are highly correlated, the selected model, may
decide to choose a feature instead of its correlated surrogate—in such cases, vari-
able selection error, measured in terms of Hamming distance with respect to the
data-generating model, may be misleading. Size of the optimal model selected
serves as a measure of the number of redundant variables selected by the model;
and prediction error measures good data-fidelity. Thusly motivated, we report “pre-
diction error” and number of nonzeros in the optimal model in our results. The
results were averaged over ten random instances: for every run, the training and
validation data had a fixed X but the noise ε was random.

Figure 4 presents results for data generated as per Example 1 with n = 500 and
p = 100. We see that the MIO procedure performs very well across all the ex-
amples. Among the methods, MIO performs the best, followed by Sparsenet,

7Note that MIO formulation (2.6) with parameter bounds as in Section 2.3 may also be used here,
with similar results.

http://cran.us.r-project.org/
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FIG. 4. Figure showing the sparsity (upper panel) and predictive performances (bottom panel) for
different subset selection procedures for the least squares loss. Here, we consider data generated
as per Example 1, with n = 500,p = 100, k0 = 10, for three different SNR values with (left panel)
ρ = 0.5, (middle panel) ρ = 0.8, and (right panel) ρ = 0.9. The dashed line in the top panel repre-
sents the true number of nonzero values. For each of the procedures, the optimal model was selected
as the one which produced the best prediction accuracy on a separate validation set, as described
in Section 5.2.3.

Lasso with Step(wise) exhibiting the worst performance—MIO consistently
chose the sparsest model. Lasso delivers quite dense models and pays the price
in predictive performance too, by selecting wrong variables. As the value of SNR
increases, the predictive power of the methods improve, as expected. The differ-
ences in predictive errors between the methods diminish with increasing SNR val-
ues. With increasing values of ρ (from left panel to right panel in the figure), the
number of nonzeros selected by the Lasso in the optimal model increases.

We also performed experiments with the unshrunk version of the Lasso. The
unrestricted least squares solution on the optimal model selected by Lasso (as
shown in Figure 4) had worse predictive performance than the Lasso, with the
same sparsity pattern. This is probably due to overfitting since the model selected
by the Lasso is quite dense compared to n,p. We also tried some variants of
unshrunk Lasso which led to models with better performances than the Lasso
but the results were inferior compared to MIO—we provide a detailed description
in Section 10.2 in the supplementary material [Bertsimas, King and Mazumder
(2015)].
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We also did experiments (not reported here, for brevity) with n = 1000,p = 50
for Example 1 and found that MIO performed better compared to other competing
methods.

5.2.4. MIO model training. We trained a sequence of best subset models (in-
dexed by k) by applying the MIO approach with warm starts. Instead of running
the MIO solvers from scratch for different values of k, we used the callback fea-
ture of integer optimization solvers. For each k, the MIO best subset algorithm
was terminated the first time either an optimality gap of 1% was reached or a time
limit of 15 minutes was reached.8 Additionally, we considered values of k from 5
through 25.

5.3. The high-dimensional regime: p � n. Herein, we investigate (a) the evo-
lution of upper bounds in the high-dimensional regime (see Section 5.3.1) (b) the
effect of a bounding box formulation on closing the optimality gap (see Sec-
tion 5.3.2) and (c) the statistical performance of the MIO approach in comparison
to other sparse learning methods (see Section 5.3.3).

5.3.1. Obtaining good upper bounds. We performed experiments similar to
those in Section 5.2.1, demonstrating the effectiveness of warm-starting MIO
solvers with discrete first-order methods. We considered a synthetic dataset cor-
responding to Example 2 with n = 30,p = 2000 for varying SNR values (see
Table 2) over a time of 500 s. As before, using the discrete first-order methods in
combination with the MIO formulation (2.4) resulted in finding the best possible
upper bounds in the shortest possible times.

Figure 5 shows the evolution of the objective value of problem (1.1) for different
values of k, for the Leukemia dataset. For each k, we warm-started the MIO solver
for formulation (2.4) with the solution obtained by Algorithm 2 and allowed the
MIO solver to run for 4000 seconds—the resultant solution is denoted by f∗. We
plot Relative Accuracy, that is, (ft − f∗)/f∗, where ft is the objective value ob-
tained after t seconds. The figure shows that the solution obtained by Algorithm 2
is improved by the MIO on various instances and the time taken to improve the
upper bounds depends upon k. In general, for smaller values of k the upper bounds
obtained by the MIO algorithm stabilize earlier, that is, MIO finds improved solu-
tions faster than larger values of k.

8We observed that it was possible to obtain speedups of a factor of 2–4 by carefully tuning the
optimization solver for a particular problem, but chose to maintain generality by solving with default
parameters. Thus, we do not report times with the intention of accurately benchmarking the best
possible time but rather to show that it is computationally tractable to solve problems to optimality
using modern MIO methods.
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TABLE 2
The quality of upper bounds for problem (1.1) obtained by Algorithm 2, MIO with cold start and
MIO warm-started with Algorithm 2. We consider Example 2 with n = 30,p = 2000 and different

values of SNR. The MIO method, when warm-started with the first-order solution performs the best
in terms of getting a good upper bound in the shortest time. Here, “Accuracy” is the same metric as

defined in (5.1). The first-order methods work well, but need not lead to best quality solutions on
their own. MIO improves the quality of upper bounds delivered by the first-order methods and their

combined effect leads to the best performance

Discrete first-order MIO cold start MIO warm start

k Accuracy Time Accuracy Time Accuracy Time

SNR = 3 5 0.1647 37.2 1.0510 500 0 72.2
6 0.6152 41.1 0.2769 500 0 77.1
7 0.7843 40.7 0.8715 500 0 160.7
8 0.5515 38.8 2.1797 500 0 295.8
9 0.7131 45.0 0.4204 500 0 96.0

SNR = 7 5 0.5072 45.6 0.7737 500 0 65.6
6 1.3221 40.3 0.5121 500 0 82.3
7 0.9745 40.9 0.7578 500 0 210.9
8 0.8293 40.5 1.8972 500 0 262.5
9 1.1879 44.2 0.4515 500 0 254.2

5.3.2. Bounding box formulation. With the aid of advanced warm starts as
provided by Algorithm 2, the MIO obtains a very high quality solution very
quickly—in most of the examples the solution thus obtained turns out to be the

FIG. 5. Behavior of MIO aided with warm start in obtaining good upper bounds for the Leukemia
dataset (n = 72,p = 1000). The vertical axis shows relative accuracy, that is, (ft − f∗)/f∗, where
ft is the objective value after t seconds and f∗ denotes the best objective value obtained by the
method after 4000 seconds. The colored diamonds correspond to the locations where the MIO (with
warm start) attains the best solution. Note that MIO improves the solution obtained by the first-order
method in all the instances.
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global minimum. However, in the typical “high-dimensional” regime, with p � n,
we observe that the certificate of global optimality comes later as the lower bounds
of the problem “evolve” slowly. This is observed even in the presence of warm
starts and using the implied bounds as developed in Section 2.3 and is aggravated
for the cold-started MIO formulation (2.4).

To address this, we consider a more structured MIO formulation (5.3) (presented
below) obtained by adding bounding boxes around a local solution. These restric-
tions guide the MIO in restricting its search space and enable the MIO to certify
global optimality inside that bounding box. We consider the following additional
bounding box constraints to the MIO formulation (2.6):{

β : ‖Xβ − Xβ0‖1 ≤ Lζ
�,loc

} ∩ {
β : ‖β − β0‖1 ≤ Lβ

�,loc

}
,

where, β0 is a candidate sparse solution. The radii of the two �1-balls above,
namely, Lζ

�,loc and Lβ
�,loc are user-defined parameters and control the size of the

feasible set. Using the notation ζ = Xβ , we have the following MIO formulation
(equipped with the additional bounding boxes):

min
β,z,ζ

1

2
ζ T ζ − 〈

X′y,β
〉 + 1

2
‖y‖2

2

s.t. ζ = Xβ,

(βi,1 − zi) : SOS type-1, i = 1, . . . , p,

zi ∈ {0,1}, i = 1, . . . , p,

p∑
i=1

zi ≤ k,

−MU ≤ βi ≤MU, i = 1, . . . , p,(5.3)

‖β‖1 ≤ M�,

−Mζ
U ≤ ζi ≤ Mζ

U , i = 1, . . . , n,

‖ζ‖1 ≤ Mζ
� ,

‖ζ − ζ 0‖1 ≤ Lζ
�,loc,

‖β − β0‖1 ≤ Lβ
�,loc.

For large values of Lζ
�,loc (resp., Lβ

�,loc) the constraints on Xβ (resp., β) become in-
effective and one gets back formulation (2.6). To see the impact of these additional
cutting planes in the MIO formulation, we consider a few examples as shown in
Figures 6, 7 and Figure 11 (which can be found in the supplementary material
[Bertsimas, King and Mazumder (2015)]).



844 D. BERTSIMAS, A. KING AND R. MAZUMDER

FIG. 6. The effect of MIO formulation (5.3) for the Leukemia dataset. Here, Lζ
�,loc = ∞ and

Lβ
�,loc = Frac. For each k, the minimum obtained was the same for the different choices of Lβ

�,loc.

Interpretation of the bounding boxes. A local bounding box in the variable ζ =
Xβ directs the MIO solver to seek for candidate solutions that deliver models with
predictive accuracy “similar” (controlled by the radius of the ball) to a reference
predictive model, given by ζ 0. In our experiments, we typically chose ζ 0 as the
solution delivered by running MIO (warm-started with a first-order solution) for
a few hundred to a few thousand seconds. More generally, ζ 0 may be selected by
any other sparse learning method. In our experiments, we found that the run-time
behavior of the MIO depends upon how correlated the columns of X are—more

FIG. 7. The effect of the MIO formulation (5.3) for a synthetic dataset as in Example 1 with ρ = 0.9,

k0 = 5, n = 50,p = 500, for different values of k. (Left panel) Lζ
�,loc = 0.5‖Xβ0‖1, Lβ

�,loc = ∞ and

SNR = 3. (Middle panel) Lζ
�,loc = ∞, Lβ

�,loc = ‖β0‖1/k and SNR = 1. (Right panel) Lζ
�,loc = ∞,

Lβ
�,loc = ‖β0‖1/k and SNR = 3. The figure shows that the bounding boxes in terms of Xβ (left–

panel) make the problem harder to solve, when compared to bounding boxes around β (middle and
right panels). A possible reason is due to the strong correlations among the columns of X. The SNR
values do not seem to have a big impact on the run-times of the algorithms (middle and right panels).
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correlation leading to longer run-times. Similarly, a bounding box around β directs
the MIO to look for solutions in the neighborhood of a reference point β0. In our
experiments, we chose the reference β0 as the solution obtained by MIO (warm-
started with a first-order solution) and allowing it to run for a few hundred to a few
thousand seconds. We observed that the MIO solver in presence of bounding boxes
in the β-space certified optimality and in the process finding better solutions; much
faster than the ζ -bounding box method. Note that the β-bounding box constraint
leads to O(p) and the ζ -box leads to O(n) constraints. Thus, when p � n the
additional ζ constraints add a fewer number of extra variables when compared to
the β constraints.

Experiments. In the first set of experiments, we consider the Leukemia dataset
with n = 72,p = 1000. We took two different values of k ∈ {5,10} and for each
case we ran Algorithm 2 with several random restarts. The best solution thus ob-
tained was used to warm start the MIO formulation (2.6), which we ran for an
additional 3600 seconds. The solution thus obtained is denoted by β0. We then

consider formulation (5.3) with Lζ
�,loc = ∞ and different values of Lβ

�,loc = Frac
(as annotated in Figure 6)—the results are displayed in Figure 6.

We consider another set of experiments demonstrating the performance of MIO
in certifying global optimality for different synthetic datasets with varying n,p, k

as well as with different structures on the bounding box. In the first case, we gen-
erated data as per Example 1 with ρ = 0.9, k0 = 5. We consider the case with
ζ 0 = Xβ0, Lβ

�,loc = ∞ and Lζ
�,loc = 0.5‖Xβ0‖1, where β0 is a k-sparse solution

obtained from the MIO formulation (2.6) run with a time limit of 1000 seconds, af-
ter being warm-started with Algorithm 2. The results are displayed in Figure 7 (left
panel). In the second case (with data same as before), we obtained β0 in the same
fashion as described before—we took a bounding box around β0, and left the box
constraint around Xβ0 inactive, that is, we set Lζ

�,loc = ∞ and Lβ
�,loc = ‖β0‖1/k.

We performed two sets of experiments, where the data were generated based on
different SNR value—the results are displayed in Figure 7 with SNR = 1 (middle
panel) and SNR = 3 (right panel).

In the same vein, we have Figure 11 [Bertsimas, King and Mazumder (2015)]
studying the effect of formulations (5.3) for synthetic datasets generated as per
Example 1 with n = 50,p = 1000, ρ = 0.9 and k0 = 5.

5.3.3. Statistical performance. To understand the statistical behavior of MIO
when compared to other approaches for learning sparse models, we considered
synthetic datasets for values of n ranging from 30–50 and values of p ranging
from 1000–2000. The following methods were used for comparison purposes (a)
Algorithm 2. Here, we used fifty different random initializations around 0, of the
form min(i − 1,1)N(0p×1,4I), i = 1, . . . ,50 and took the solution corresponding
to the best objective value; (b) The MIO approach with warm starts from part (a);
(c) The Lasso solution and (d) The Sparsenet solution.



846 D. BERTSIMAS, A. KING AND R. MAZUMDER

FIG. 8. The sparsity and predictive performance for different procedures: (Left panel) shows
Example 1 with n = 50,p = 1000, ρ = 0.8, k0 = 5 and (right panel) shows Example 2 with
n = 30,p = 1000—for each instance several SNR values have been shown.

For methods (a), (b) we considered ten equispaced values of k in the range
[3,2k0] (including the optimal value of k0). For each of the methods, the best
model was selected in the same fashion as described in Section 5.2.3. For some
of the above examples, we also study the performance of the unshrunk version of
the Lasso. In Figures 8 and 9, we present selected representative results from
four different examples described in Section 5.1. In Figure 8, the left panel shows
the performance of different methods for Example 1 with n = 50,p = 1000, ρ =
0.8, k0 = 5. In this example, there are five nonzero coefficients: the features cor-

FIG. 9. (Left panel) shows performance for data generated according to Example 3 with
n = 30,p = 1000 and (right panel) shows Example 4 with n = 50,p = 2000.
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responding to the nonzero coefficients are weakly correlated and a feature having
a nonzero coefficient is highly correlated with a feature having a zero coefficient
(in the generating model). In this situation, the Lasso selects a very dense model
since it fails to distinguish between a zero and a nonzero coefficient when the vari-
ables are correlated—it brings both the coefficients in the model (with shrinkage).
MIO (with warm-start) performs the best—both in terms of predictive accuracy
and in selecting a sparse set of coefficients. MIO obtains the sparsest model among
the four methods and seems to find better solutions in terms of statistical properties
than the models obtained by the first-order methods alone. Interestingly, the “op-
timal model” selected by the first-order methods is more dense than that selected
by the MIO. The number of nonzero coefficients selected by MIO remains fairly
stable across different SNR values, unlike the other three methods. For this ex-
ample, we also experimented with the different versions of unshrunk Lasso [see
results in Bertsimas, King and Mazumder (2015), Section 10.2 for details]. In sum-
mary: the best unshrunk Lasso models had performance marginally better than
Lasso but quite inferior to MIO. Figure 8 (right panel) shows Example 2, with
n = 30,p = 1000, k0 = 5 and all nonzero coefficients equal one. Here, all methods
perform similarly in terms of predictive accuracy. In fact, for the smallest value of
SNR, the Lasso achieves the best predictive model. In all of the cases, however,
the MIO achieves the sparsest model with favorable predictive accuracy. In Fig-
ure 9, for both the examples, the model matrix is an i.i.d. Gaussian ensemble. The
underlying regression coefficient β0 however, is structurally different than Exam-
ple 2 (as in Figure 8, right-panel). The alternating signs of β0 is responsible for dif-
ferent statistical behaviors of the four methods across Figures 8 (right-panel) and
Figure 9 (both panels). The MIO (with warm-starts) seems to be the best among
all the methods. For Example 3 (Figure 9, left panel), the predictive performances
of Lasso and MIO are comparable—the MIO, however, delivers much sparser
models than the Lasso.

The key conclusions are as follows:

1. The MIO best subset algorithm has a significant edge in detecting the cor-
rect sparsity structure for all examples compared to Lasso, Sparsenet and the
stand-alone discrete first-order method.

2. For data generated as per Example 1 with large values of ρ, the MIO best
subset algorithm gives better predictive performance compared to its competitors.

3. For data generated as per Examples 2 and 3, MIO delivers similar predictive
models like the Lasso, but produces much sparser models. In fact, Lasso seems
to perform marginally better than MIO, as a predictive model for small values of
SNR.

4. For Example 4, MIO performs the best both in terms of predictive accuracy
and delivering sparse models.
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6. Computations for subset selection with least absolute deviation loss.
Herein, we study the properties of the best subset selection problem with LAD
objective (3.13) via a few representative examples. The LAD loss is appropriate
when the error follows a heavy-tailed distribution. The datasets used for the exper-
iments parallel those described in Section 5.1, the difference being in the distribu-
tion of ε. We took εi i.i.d. from a double exponential distribution with variance σ 2.
The value of σ 2 was adjusted to get different values of SNR.

Datasets analysed. We consider a set-up similar to Example 1 (Section 5.1)
with k0 = 5 and ρ = 0.9. Different choices of (n,p) were taken to cover both
the overdetermined (n = 500,p = 100) and high-dimensional cases (n = 50,p =
1000 and n = 500,p = 1000).

Other methods used for comparison were (a) discrete first-order method (Sec-
tion 3.3) (b) MIO warm-started with the first-order solutions and (c) the LAD loss
with �1 regularization:

min‖y − Xβ‖1 + λ‖β‖1,

which we denote by LAD-Lasso. The training, validation and testing were done
in the same fashion as in the least squares case. For each method, we report the
number of nonzeros in the optimal model and associated prediction accuracy (5.2).

Figure 10 (left panel) compares the MIO approach with others for the overdeter-
mined case (n > p). Figure 10 (middle and right panels) do the same for the high-
dimensional case (p � n). The conclusions parallel those for the least squares

FIG. 10. Figure showing the number of nonzero values and predictive performance for different
values of n and p for problem (3.13). The data is generated as per Example 1 with ρ = 0.9, k0 = 5,
for different problem sizes—(left panel) n = 500,p = 100; (middle panel) n = 50,p = 1000 and
(right panel) n = 500,p = 1000. The acronym “Lasso” refers to LAD-Lasso. MIO is seen to
deliver sparser models with better predictive accuracy when compared to the LAD-Lasso.
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case. Since, in the example considered, the features corresponding to the nonzero
coefficients are weakly correlated and a feature having a nonzero coefficient is
highly correlated with a feature having a zero coefficient—the LAD-Lasso se-
lects an overly dense model and misses out in terms of prediction error. Both the
MIO (with warm-starts) and the discrete first-order methods behave similarly—
much better than �1 regularization schemes. As expected, we observed that subset
selection with least squares loss leads to inferior models for these examples, due
to a heavy-tailed distribution of the errors.

Our findings here are similar to that in the least squares case. The MIO approach
provides an edge both in terms of sparsity and predictive accuracy compared to
Lasso both for the overdetermined and the high-dimensional case.

7. Conclusions. In this paper, we have revisited the classical best subset se-
lection problem of choosing k out of p features in linear regression given n obser-
vations using a modern optimization lens—MIO and a discrete extension of first-
order methods from continuous optimization. Exploiting the astonishing progress
of MIO solvers in the last twenty-five years, we have shown that this approach
solves problems with n in the 1000s and p in the 100s in minutes to provable opti-
mality, and finds near optimal solutions for n in the 100s and p in the 1000s in min-
utes. Importantly, the solutions provided by the MIO approach often significantly
outperform other state of the art methods like Lasso in achieving sparse models
with good predictive power. Unlike all other methods, the MIO approach always
provides a guarantee on its suboptimality even if the algorithm is terminated early.
Moreover, it can accommodate side constraints on the coefficients of the linear
regression and also extends to finding best subset solutions for the least absolute
deviation loss function. While continuous optimization methods have played and
continue to play an important role in statistics over the years, discrete optimiza-
tion methods have not. The evidence in this paper as well as in Bertsimas and
Mazumder (2014) suggests that MIO methods are tractable and lead to desirable
properties (improved accuracy and sparsity among others) at the expense of higher,
but still reasonable, computational times.
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10.1214/15-AOS1388SUPP; .pdf). Supporting technical material and additional
experimental results including some figures and tables are presented in the supple-
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